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Abstract

In this paper, the torsional vibration and radial vibration of isotropic metal thin annular plates with conical cross-

section are deduced by using Bessel functions; and according to electro-mechanical analogy, the electro-mechanical

equivalent circuits are obtained. Based on the electro-mechanical equivalent circuits, the resonance frequency equations

and the expressions of angular and radial displacement amplitude magnifications are derived, and the resonance

frequencies and magnifications are solved by analytical method. The relationships between torsional and radial resonance

frequencies and geometrical dimensions are discussed; and the relationships between angular and radial displacement

amplitude magnifications and the ratio of outer radius over inner radius are analyzed. Modal shapes are analyzed by finite

element method (ANSYS). It is shown that the values calculated by using the theory of this paper are in good agreement

with the results simulated by ANSYS. The method can serve as benchmark values for researchers to validate other variable

thickness thin annular plates.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A number of plates with different shapes, sizes, thickness variations and boundary conditions play an important
role in many fields, such as aerospace, marine, mechanical, petroleum industry, transport and electronic
engineering. Along with the development of ultrasonic technology, annular plates are widely used in more and
more applications. For example, thin annular plates are used to concentrate energy, magnify displacement/velocity
and obtain high power in ultrasonic metal and plastic welding, ultrasonic machining and ultrasonic cold tube-
drawing. In underwater acoustics and vibration control, radial vibration and torsional vibration are widely used,
and a number of papers have dealt with natural frequencies of annular plates by using variety of methods in order
to investigate the effect of elastic foundation. The vibration of a plate supported laterally by an elastic foundation
has been discussed in Leissa’s celebrated book [1]. Leissa deduces that the effect of a full Winkler foundation
merely increases the square of the natural frequency of the plate by a constant. The variable thickness plates have
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

a inner radius
b outer radius
cr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=rð1� s2Þ

p
longitudinal wave velocity

ct ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=2ð1þ sÞr

p
shear wave velocity

E Young’s modulus
fr radial resonance frequency
ft torsional resonance frequency
Fa radial force at inner surface
Fb radial force at outer surface
G ¼ E/2(1+s) shear modulus
ha thickness at inner surface
hb thickness at outer surface
kr ¼ o=cr wavenumber of radial vibrations
kt ¼ o=ct wavenumber of torsional vibrations
Ma external moment at inner surface
Mb external moment at outer surface
Mr radial displacement amplitude magnifica-

tion

Mt angular displacement amplitude magnifi-
cation

Sa area of inner surface
Sb area of outer surface
Tr radial stress
Tt tangential stress
v radial velocity
va radial velocity at inner surface
vb radial velocity at outer surface
x radial displacement
r material density
s Poisson’s ratio
f angular displacement
j torsional angular velocity
ja torsional angular velocity at inner sur-

face
jb torsional angular velocity at outer sur-

face
o angular frequency
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been studied by several methods. Many researchers have used Ritz method to solve the problem approximately
[2–6]. The radial and torsional vibrations of thin annular plates can be solved by using transfer matrix [7–8]. The
differential quadrature (DQ) and harmonic differential quadrature (HDQ) can be used to solve the vibrations of
variable thickness plates or uniform thickness plates [9–12]. It is noted that it is difficult to find exact analytical
solutions for common variable thickness annular plates; however, in some special cases the analytical solutions can
be found, such as step type, exponential type and conical (or linear) type, but those methods are too complex to
calculate the resonance frequency [13–17].

In this paper, electro-mechanical equivalent circuits are introduced to analyze the free vibration of thin annular
plates with conical cross-section. Based on the equivalent circuits, the analytical resonance frequencies of torsional
and radial vibrations and the analytical results of angular and radial displacement amplitude magnifications are
derived. The relationships between resonance frequencies and geometrical dimensions are discussed, and the
relationships between angular and radial displacement amplitude magnifications and geometrical dimensions are
discussed, too. The method of this paper is simpler than those mentioned above, and the result is in good agreement
with the result from FEM. The method can be also used to analyze other variable thickness annular plates.
2. Torsional vibrations and radial vibrations of annular plates with conical cross-section

2.1. Torsional vibrations

The cross-section of the annular plate is illustrated in Fig. 1, in this figure, r and Z are radial and axial
coordinates, and the others are defined above. The cylindrical coordinate is used in the analysis, considering
the annular plate to be a thin annular plate, its thickness is much less than its radius, i.e. hb5rb , the stress and
the strain are independent of the axial coordinate, and the stress of the axial coordinate can be ignored, so the
vibration of the thin annular plate can be assumed to be axisymmetric, and the wave equation of torsional
vibrations of annular plates with variable thickness is expressed as follows [8]:

d2f
dr2
þ

1

r
þ

1

h

dh

dr

� �
df
dr
�

1

r2
þ

1

rh

dh

dr

� �
f ¼

1

c2t

q2f
qt2

(1)
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Fig. 1. A sketch map of an annular plate with conical section.
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where h ¼ h(r) is the thickness of the annular plate. And the tangential stress of the plate is

Tt ¼ G � r �
qf
qr

(2)

If the thickness function can be expressed as h(r) ¼ h0 � r, where h0 is a constant; in other words, the cross-
section of the annular plate is conical. For harmonic vibration, substituting the angular displacement
component f ¼ f0 � expðjotÞ into Eq. (1) yields

d2f0

dr2
þ

2

r

df0

dr
þ k2

t �
2

r2

� �
f0 ¼ 0 (3)

where f0 is the angular displacement amplitude. It is obvious that Eq. (3) is Bessel equation of order 3
2. Using

the expression f ¼ f0 � expðjotÞ and the solution of Eq. (3), the following expression can be obtained:

f ¼ r�1=2½AJ3=2ðktrÞ þ BY 3=2ðktrÞ� expðjotÞ (4)

where A and B are constants, J3=2ðkurÞ and Y 3=2ðkurÞ are the first kind and the second kind Bessel functions of
order 3

2
, respectively. From Eq. (4), the angular velocity can be obtained as

j ¼
qf
qt
¼ jo � r�1=2½AJ3=2ðktrÞ þ BY 3=2ðktrÞ� expðjotÞ (5)

According to the boundary conditions of angular velocities qf=qtjr¼a ¼ ja and qf=qtjr¼b ¼ �jb, the
expressions of A and B can be obtained

A ¼ �
1

jo
b1=2Y ajb þ a1=2Y bja

JbY a � JaY b

expð�jotÞ

B ¼
1

jo
b1=2Jajb þ a1=2Jbja

JbY a � JaY a

expð�jotÞ

8>>>><
>>>>:

(6)

where Ja ¼ J3/2(kta), Jb ¼ J3/2(ktb), Ya ¼ Y3/2(kta), Yb ¼ Y3/2(ktb). According to the boundary conditions of
moments Mjr¼a ¼ a � Ttjr¼a � Sa ¼ �Ma, Mjr¼b ¼ b � Ttjr¼b � Sb ¼ �Mb, Ma, Mb as functions of ja, jb can be
obtained

Ma ¼ �
G

2jo
� Sa � a �1þ

2aðY 0aJb � J 0aY bÞ

JbY a � JaY b

� �
ja �

G

jo
� Sa � a

a1=2b1=2
ðJaY 0a � J 0aY aÞ

JbY a � JaY b

" #
jb

Mb ¼ �
G

2jo
� Sb � b 1þ

2bðY 0bJa � J 0bY aÞ

JbY a � JaY b

� �
jb �

G

jo
� Sb � b

a1=2b1=2
ðJbY 0b � J 0bY bÞ

JbY a � JaY b

" #
ja

8>>>>><
>>>>>:

(7)

where Sa ¼ 2paha, Sb ¼ 2pbhb, J0a, J0b, Y0a, Y0b are the differential of Ja, Jb, Ya, Yb, respectively; their expressions
are J 0a ¼ ðd=drÞ½J3=2ðktrÞ�jr¼a, J 0b ¼ ðd=drÞ½J3=2ðktrÞ�jr¼b, Y 0a ¼ ðd=drÞ½Y 3=2ðktrÞ�jr¼a, Y 0b ¼ ðd=drÞ½Y 3=2ðktrÞ�jr¼b.
Introducing two expressions M 0

a ¼ 2MaktðJbY a � JaY bÞ=rctSa, M 0
b ¼ 2Mbkt ðJbY a � JaY bÞ=rctSb, according
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to the characteristics of Bessel functions, aðJaY 0a � J 0aY aÞ ¼ bðJbY 0b � J 0bY bÞ ¼ p=2 can be obtained, so Eqs. (7)
can be rewritten as

M 0
b ¼ ðZ1t þ Z3tÞjb þ Z3tja

M 0
a ¼ ðZ2t þ Z3tÞja þ Z3tjb

(
(8)

where Z1t, Z2t, Z3t are three mechanical impedances of torsional vibrations.

Z1t ¼ jbðJbY a � JaY bÞ þ j2b2
ðY 0bJa � J 0bY aÞ � Z3t

Z2t ¼ �jaðJbY a � JaY bÞ þ j2a2ðY 0aJb � J 0aY bÞ � Z3t

Z3t ¼ jpa1=2b1=2

8><
>: (9)

The physical concepts of electrical quantities and mechanical quantities are different from each other, but
some of them have the same mathematical expressions. Electro-mechanical analogy is used to deal with the
problem of mechanics and acoustics by the method that is used in electricity [18]; as a result, the problem would
be simpler to deal with. For example, the electro-mechanical equivalent circuit of ultrasonic transducer is obtained
via electro-mechanical analogy; the method can be used to obtain the resonance frequency of ultrasonic
transducer as well as the resonance frequency of circuit. According to the theory of electro-mechanical analogy,
the electro-mechanical equivalent circuit of the annular plate with conical cross-section can be obtained as in
Fig. 2.

In applications, the load mechanical impedance of the output terminals of the concentrator is difficult to
determine, so the frequency equation where the load mechanical impedance is ignored should be considered.
In the above analysis, the mechanical loss in the plate is ignored, in the case of no load mechanical impedance,
according to Fig. 2, the torsional frequency equation can be obtained as follows:

Z1t þ
Z2tZ3t

Z2t þ Z3t

¼ 0 (10)

The solution of Eq. (10) is kt, considered the expressions of kt and ct, the resonance frequency can be obtained

f tðnÞ ¼
ktðnÞ

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

2ð1þ sÞr

s
(11)

where n is a positive integer, while n ¼ 1, the resonance frequency is defined as fundamental resonance
frequency. It can be seen from Eq. (10) and the expressions Z1t, Z2t, Z3t that when the material parameters E,
r, s are given, kt is related to the inner radius a and outer radius b, so the resonance frequency is also related to
a and b.

Another important parameter of the torsional vibration annular plate concentrator is the angular
displacement amplitude magnification. According to Fig. 2, we have

Mt ¼
fa

fb

����
���� ¼ ja

jb

����
���� ¼ Z3t

Z2t þ Z3t

����
���� (12)
�b �aZ1t

M’
Z3t

Z2t

M’b a

Fig. 2. Equivalent circuit of annular thin plate with conical cross-section.
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When the material parameters E, r, s and geometrical radiuses a, b are given, kt can be computed from
Eq. (10), then substituting kt and E, r, s, a, b into Eq. (12), the magnification Mt can be computed. From
further numerical calculation, it can be found that the magnification Mt is merely related to the ratio of outer
radius over inner radius.
2.2. Radial vibrations

The radial vibration can be assumed to be axisymmetric too. In Fig. 1, the variables Ma, Mb, ja, jb are
replaced by Fa, Fb, va, vb, respectively. The wave equation of radial vibrations of annular plates with variable
thickness is as follows:

d2x
dr2
þ

1

r
þ

1

h

dh

dr

� �
dx
dr
�

1

r2
�

s
rh

dh

dr

� �
x ¼

1

c2r

q2x
qt2

(13)

And the radial stress of the plate is

Tr ¼
E

1� s2
dx
dr
þ s

x
r

� �
(14)

If the cross-section of the annular plate is conical, Eq. (13) can be rewritten as

d2x
dr2
þ

2

r

dx
dr
�

1� s
r2

x ¼
1

c2r

q2x
qt2

(15)

For harmonic vibration, we have

x ¼ ½Cf ðrÞ þDgðrÞ� expðjotÞ (16)

where C, D are constants, f(r), g(r) are two introduced functions, their expressions are

f ðrÞ ¼ r�1=2JaðkrÞ

gðrÞ ¼ r�1=2Y aðkrÞ

(
(17)

Ja(kr), Ya(kr) are the first kind and the second kind Bessel functions, respectively. a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
5
4� s2

q
. From

Eq. (16), the radial velocity can be obtained as

v ¼
qx
qt
¼ jo½Cf ðrÞ þDgðrÞ� expðjotÞ (18)

According to the boundary conditions of radial velocities qx=qrjr¼a ¼ va; qx=qrjr¼b ¼ �vb and radial forces
Trjr¼a � Sa ¼ �Fa; Trjr¼b � Sb ¼ �Fb, Fa, Fb as functions of va, vb can be obtained as follows:

F 0b ¼ ðZ1r þ Z3rÞvb þ Z3rva

F 0a ¼ ðZ2r þ Z3rÞva þ Z3rvb

(
(19)

where Z1r, Z2r, Z3r are three mechanical impedances of radial vibration and F0a, F0b are two introduced
functions

F 0a ¼
Fakr

rcrSa½GðaÞf ðaÞ � F ðaÞgðaÞ�

F 0b ¼
Fbkr

rcrSb½GðbÞf ðbÞ � F ðbÞgðbÞ�

8>>><
>>>:

(20)
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Z1r ¼
F ðbÞ½gðaÞ � gðbÞ� � GðbÞ½f ðaÞ � f ðbÞ�

gðbÞF ðbÞ � f ðbÞGðbÞ
Z3r

Z2r ¼
F ðaÞ½gðbÞ � gðaÞ� � GðaÞ½f ðbÞ � f ðaÞ�

gðaÞF ðaÞ � f ðaÞGðaÞ
Z3r

Z3r ¼ j
1

f ðaÞgðbÞ � f ðbÞgðaÞ

8>>>>>>><
>>>>>>>:

(21)

where f ðaÞ ¼ f ðrÞjr¼a; f ðbÞ ¼ f ðrÞjr¼b, gðaÞ ¼ gðrÞjr¼a; gðbÞ ¼ gðrÞjr¼b, F ðaÞ ¼ F ðrÞjr¼a; F ðbÞ ¼ F ðrÞjr¼b;GðaÞ ¼
GðrÞjr¼a; GðbÞ ¼ GðrÞjr¼b, F(r), G(r) are two introduced functions, the expressions are

F ðrÞ ¼
df ðrÞ

dr
þ

s
r
f ðrÞ

GðrÞ ¼
dgðrÞ

dr
þ

s
r
gðrÞ

8>><
>>: (22)

According to the theory of electro-mechanical analogy, the electro-mechanical equivalent circuit of radial vibrations
can be obtained as the electro-mechanical equivalent circuit of torsional vibrations in Fig. 2, but the variables M0a,
M0b, ja, jb, Z1t, Z2t, Z3t are replaced by F0a, F0b, va, vb, Z1r, Z2r, Z3r, respectively. Then, the radial frequency equation
can be obtained as

Z1r þ
Z2rZ3r

Z2r þ Z3r

¼ 0 (23)

The solution of Eq. (23) is kr, considered the expressions of kr, cr, the resonance frequency can be obtained as

f rðnÞ ¼
krðnÞ

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

rð1� s2Þ

s
(24)

where n is a positive integer, while n ¼ 1, the resonance frequency is defined as fundamental frequency. kr is also
related to the inner radius a and outer radius b when the material parameters are given.

The radial displacement amplitude magnification can be also obtained from the equivalent circuit.

Mr ¼
xa

xb

����
���� ¼ va

vb

����
���� ¼ Z3r

Z2r þ Z3r

����
���� (25)

From Eq. (23), kr is computed, and then substituting kr into Eq. (25), the magnification Mr can be computed.
From further numerical calculation, it can be found that Mr is also merely related to the ratio of b over a.

It should be point out, the velocities (j and v) and displacements (f and x) of the vibrations are far less than
the sound velocities (ct and cr) and corresponding wavelengths, so the method of this paper is not suitable for
nonlinear vibration problem of solid mechanics. In order to analyze the relationships between the resonance
frequencies and magnifications and the geometrical dimensions, the resonance frequencies and magnifications
are computed by using Eqs. (10)–(12) and Eqs. (23)–(25) when the inner radius and outer radius are fixed. The
metal annular plate material used here is steel, its material parameters are as follows: r ¼ 7800 kg/m3,
E ¼ 2.09� 1011N/m2, s ¼ 0.28.

The relationships between the resonance frequencies and magnifications and the geometrical radiuses can be
obtained as the following figures.

Figs. 3 and 4 are theoretical relationships between the torsional and radial fundamental resonance
frequencies and the radiuses, respectively. It can be seen that when the inner radius is fixed, the torsional
resonance frequency and the radial resonance frequency are decreased when the outer radius is increased. As
the outer radius increased, the torsional resonance frequencies’ curves and the radial resonance frequencies’
curves of the annular plates with different inner radiuses are accord with each other. When the outer radius is
fixed, the bigger the inner radius, the bigger the torsional resonance frequency; but for radial vibration, it is
not so, the bigger the inner radius, the smaller the radial resonance frequency. It should be pointed out that the
intersections or coincidences of the curves cannot appear because the resonance frequencies are also affected
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Fig. 3. Theoretical relationship between the torsional resonance frequency and radius.
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by the inner radius, but the primary factor is the outer radius. The reason for this is that the torsional stiffness
and radial stiffness are decreased when the inner radius is decreased while the outer radius is kept constant.

Figs. 5 and 6 are theoretical relationships between the magnifications and the ratio of outer radius over
inner radius. It can be seen from Fig. 5 that when the ratio (b/a) is increased, the angular displacement
amplitude magnification is increased first and decreased slowly later, the maximum of the magnification and
the value of corresponding ratio (b/a) are 7.3 and 4.0, respectively. From Fig. 6, it can be seen that the radial
displacement amplitude magnification is decreased when the ratio (b/a) is increased, but it decreased more
slowly, in a wide range, the magnification is approximate to 1.0.

3. Theoretical simulation of the resonance frequency of the annular plate with conical cross-section

As far as we know, the software ANSYS is very useful in finding the resonance frequency, so some
annular plates are analyzed by the software in order to validate the theory of this paper. The results are listed
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Table 1

Theoretical and simulated resonance frequencies.

No. a (m) b (m) ha (m) hb (m) ft (Hz) fr (Hz) fnt (Hz) fnr (Hz) Df1 (%) Df2 (%)

1 0.01 0.03 0.003 0.009 100,693 40,812 104,464 40,842 3.610 0.074

2 0.01 0.03 0.004 0.012 100,693 40,812 104,812 40,856 3.930 0.108

3 0.01 0.04 0.002 0.008 72,122 32,237 75,620 32,255 4.626 0.056

4 0.005 0.02 0.0025 0.001 144,293 64,455 151,206 64,573 4.572 0.183

5 0.02 0.06 0.006 0.018 50,347 20,406 52,232 20,421 3.609 0.074

Z. Fu et al. / Journal of Sound and Vibration 321 (2009) 1026–1035 1033
in Table 1, in the table, ft, fr are, respectively, the theoretical torsional and radial fundamental resonance
frequencies that is analyzed in this paper, fnt, fnr are, respectively, the torsional and radial resonance
frequencies simulated by ANSYS, Df 1 ¼ jf nt � f tj=f nt, Df 2 ¼ jf nr � f rj=f nr, Df1, Df2 are the relative errors of
theoretical and simulated results. The type of elements is structural-solid-brick 8 nodes 45. Figs. 7 and 8 are
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Fig. 7. FEM analysis mode shape for torsional vibration.

Fig. 8. FEM analysis mode shape for radial vibration.
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the simulated modal shapes for the torsional and radial vibration of annular plates. It can be seen that the
computed frequencies from the two methods are in good agreement with each other, and the relative errors are
very small.
4. Conclusion

In this paper, the torsional and radial vibrations of annular plates with conical cross-section are analyzed by
using electro-mechanical equivalent circuit. The relationships between the frequencies and geometrical
radiuses are analyzed. When the inner radius is fixed, the torsional and radial resonance frequencies are
decreased as the outer radius is increased. Although the frequencies are affected by inner radius, the primary
factor is the outer radius. The relationships between the magnifications and the geometrical radius are also
analyzed, the magnifications are merely related to the ratio of outer radius over inner radius. The physic
concepts of this method are more prominent than others.

In the above analysis, the annular plate with conical cross-section is assumed to be very thin, in other words,
its thickness is much less than its radius; and the vibration can be assumed to be axisymmetric. For a thick
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annular plate, its vibrations are complex; the method of this paper was not suitable. And the method of this
paper is not suitable for nonlinear vibration problem of solid mechanics, too.

The frequencies are also analyzed by FEM, the results of the two methods are in a good agreement with
each other. Although the magnifications cannot be analyzed by the software ANSYS and difficult to be
measured via experiments, it may be useful for finding appropriate ratio (b/a) to concentrate maximal energy.
The theory of this paper is helpful for designing annular plates with conical cross-section, and the method is
useful for other variable thickness thin annular plates.
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